首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3049篇
  免费   761篇
  国内免费   2171篇
地球物理   649篇
地质学   4881篇
海洋学   128篇
天文学   11篇
综合类   62篇
自然地理   250篇
  2024年   11篇
  2023年   88篇
  2022年   181篇
  2021年   191篇
  2020年   185篇
  2019年   244篇
  2018年   240篇
  2017年   301篇
  2016年   294篇
  2015年   309篇
  2014年   332篇
  2013年   401篇
  2012年   389篇
  2011年   284篇
  2010年   268篇
  2009年   294篇
  2008年   269篇
  2007年   292篇
  2006年   283篇
  2005年   200篇
  2004年   194篇
  2003年   118篇
  2002年   79篇
  2001年   67篇
  2000年   77篇
  1999年   51篇
  1998年   35篇
  1997年   67篇
  1996年   36篇
  1995年   30篇
  1994年   29篇
  1993年   27篇
  1992年   26篇
  1991年   20篇
  1990年   14篇
  1989年   14篇
  1988年   10篇
  1987年   8篇
  1986年   7篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1977年   1篇
排序方式: 共有5981条查询结果,搜索用时 46 毫秒
11.
榍石作为副矿物在哀牢山-红河剪切带新生代富碱侵入岩中广泛存在。原位获取榍石矿物内部微量元素、U-Pb年龄和Sm-Nd同位素的空间变化对获取矿物和岩石的成因演化信息具有重要意义。本文使用四级杆/多接收电感耦合等离子体质谱(Quadrupole/Multi-Collector Inductively Coupled Plasma Mass Spectrometry,Q/MC-ICP-MS)与激光剥蚀系统(Laser Ablation,LA)联用,对哀牢山-红河剪切带5个富碱侵入岩体(桃花岩体、宁蒗-永胜岩体、哈播岩体、铜厂岩体和十里村岩体)中榍石开展了微区原位微量元素、U-Pb年代学和Sm-Nd同位素研究。微量元素分析结果表明,三江富碱侵入岩中榍石为岩浆成因,亏损Rb、Ba、Pb、Sr等大离子亲石元素,富集Th、U、Nb、Ta、Zr、Hf等高场强元素。榍石的稀土配分图均表现为明显右倾,不具有或具有弱的Eu负异常。与云南北衙、马厂箐矽卡岩矿床中的热液榍石相比,本文榍石在稀土元素组成上,具有较高的稀土元素总量、较高的Th/U、LREE/HREE和Ce/Ce*比值,具有较低的Eu/Eu*、Nb/Ta、Zr/Hf比值。微区原位LA-Q-ICP-MS U-Pb定年结果表明,研究区富碱岩体中榍石结晶年龄在32.5~37.9Ma之间,代表了岩体形成时代,与三江地区哀牢山-红河剪切带及其附近新生代富碱岩浆活动高峰期(~35Ma)一致,属于青藏高原晚碰撞期岩浆作用的产物。榍石微区原位LA-MCICP-MS Sm-Nd同位素分析结果显示,榍石颗粒的Nd同位素组成均一,表明榍石结晶过程中寄主岩浆的Nd同位素组成没有发生明显变化。各个富碱岩体之间的榍石Nd同位素组成变化范围在-6.8~-2.1之间,与全岩的同位素特征一致,表明榍石的原位微区Sm-Nd同位素可以作为富碱侵入岩研究中有效的示踪手段之一。  相似文献   
12.
Hexi Corridor is located at the northeastern margin of the Tibetan plateau. Series of late Quaternary active faults are developed in this area. Numerous strong earthquakes occurred in history and nowadays. Jinta Nanshan fault is one of the boundary faults between the Qinghai-Tibet block and the Alxa block. The fault starts from the northwest of Wutongdun in the west, passes through Changshan, Yuanyangchi reservoir, Dakouzi, and ends in the east of Hongdun. Because the Jinta Nanshan fault is a new active fault in this region, it is important to ascertain its paleoearthquakes since late Pleistocene for the earthquake risk study. Previous studies were carried out on the western part, such as field geomorphic investigation and trench excavation, which shows strong activity in Holocene on the western segment of Jinta Nanshan fault. On the basis of the above research, in this paper, we carried out satellite image interpretation, detailed investigation of faulted landforms and differential GPS survey for the whole fault. Focusing on the middle-eastern part, we studied paleoearthquakes through trench exploration on the Holocene alluvial fan and optical luminescence dating. The main results are as follows:Early Pleistocene to late Pleistocene alluvial strata are widely developed along the fault and Holocene sediment is only about tens of centimeters thick. The Jinta Nanshan fault shows long-lasting activity since late Quaternary and reveals tens of centimeters of the lowest scarp which illustrates new strong activity on the middle-east segment of this fault. Since late Pleistocene, 4 paleoearthquakes happened respectively before(15.16±1.29) ka, before(9.9±0.5) ka, about 6ka and after(3.5±0.4) ka, revealed by 4 trenches, of which 2 are laid on relatively thicker Holocene alluvial fan. Two events occurred since middle Holocene, and both ruptured the whole fault.  相似文献   
13.
14.
Kiacatoo Man, a large, rugged Aboriginal adult buried in the Lachlan riverine plains of southeastern Australia, was discovered in 2011. Laser‐ablation uranium series analysis on bone yielded a minimum age for the burial of 27.4 ± 0.4 ka (2σ). Single‐grain, optically stimulated luminescence ages on quartz sediment in which the grave had been dug gave a weighted mean age of 26.4 ± 1.5 ka (1σ). Luminescence samples from the grave infill and from sediment beneath the grave exhibit overdispersed dose distributions consistent with bioturbation or other disturbance, which has obscured the burial signal. The overlap between the minimum (U‐series) and maximum (luminescence) ages places the burial between 27.0 and 29.4 ka (2σ). Luminescence ages obtained from the channel belt of between 28 ± 2 and 25 ± 3 ka indicate that fluvial sedimentation was occurring before the Last Glacial Maximum, which is consistent with the broader geomorphic setting. Together, these results are internally and regionally consistent, and indicate that Kiacatoo Man was one of the more ancient individuals so far identified in Australia. His remains are important to our understanding of patterns of biological variation and other processes that have shaped people in the Murray‐Darling Basin through time. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   
15.
Estimating the extent and age of the last glacial maxima as well as the chronology of glacial recessions in various environmental contexts is key to source-to-sink studies and paleoclimate reconstructions. The Argentera-Mercantour massif is located at the transition between the Alps and the Mediterranean Sea, therefore, its deglaciation chronology can be compared to the sediment budget of the Var River basin. Based on 13 new cosmic-ray exposure (CRE) beryllium-10 (10Be) datings performed on moraines and polished crystalline bedrocks and 22 reassessed 10Be CRE ages from similar altitude nearby steep basement surfaces, and from a lake sediment core, we can constrain the deglaciation chronology of the Argentera-Mercantour massif. These data allow for the first time to fully reconstruct the deglaciation history at the scale of the entire massif in agreement with a major glacier recession at c. 15 ka, at the onset of Bølling transition between the Oldest and Older Dryas. Main deglaciation of the upper slopes [2700–2800 m above sea level (a.s.l.)] occurred after the Last Glacial Maximum (LGM) at 20.8–18.6 ka, followed by the main deglaciation of the lower slopes (2300 m a.s.l.) at 15.3–14.2 ka. Finally, the flat polished surfaces above 2600 m a.s.l. and the zones confined within narrow lateral valleys were likely affected by progressive ice melting of remaining debris covered glaciers and moraine erosion following the Younger Dryas re-advance stage between 12 and 8–9 ka. At lower elevations, the Vens Lake located at 2300 m a.s.l., allows evidence of the onset of lake sedimentation at c. 14 ka and a transition towards a vegetated environment that mainly occurred before 8 ka. Moraine final stabilization at 5 ka might reflect denudation acceleration during the Holocene humid phase. This contribution reveals a glacier–climate relationship more sensitive to warming phases in the southern Alps highlighted by a major decrease of glaciers after c. 15 ka. This major deglaciation is correlated with a 2.5-fold decrease of sediment discharge of rivers into the Mediterranean Sea. © 2019 John Wiley & Sons, Ltd.  相似文献   
16.
In the Mont Blanc massif (European Western Alps), rockfalls are one of the main natural hazards for alpinists and infrastructure. Rockfall activity after the Little Ice Age is well documented. An increase in frequency during the last three decades is related to permafrost degradation caused by rising air temperatures. In order to understand whether climate exerts a long-term control on rockfall occurrence, a selection of paleo-rockfall scars was dated in the Glacier du Géant basin [>3200 m above sea level (a.s.l.)] using terrestrial cosmogenic nuclides. Rockfall occurrence was compared to different climatic and glacial proxies. This study presents 55 new samples (including replicates) and 25 previously-published ages from nine sampling sites. In total, 62 dated rockfall events display ages ranging from 0.03 ± 0.02 ka to 88.40 ± 7.60 ka. Holocene ages and their uncertainties were used to perform a Kernel density function into a continuous dataset displaying rockfall probability per 100 years. Results highlight four Holocene periods of enhanced rockfall occurrence: (i) c. 7–5.7 ka, related to the Holocene Warm Periods; (ii) c. 4.5–4 ka, related to the Sub-boreal Warm Period; (iii) c. 2.3–1.6 ka, related to the Roman Warm Period; and (iv) c. 0.9–0.3 ka, related to the Medieval Warm Period and beginning of the Little Ice Age. Laser and photogrammetric three-dimensional (3D) models of the rock walls were produced to reconstruct the detached volumes from the best-preserved rockfall scars (≤0.91 ± 0.12 ka). A structural study was carried out at the scale of the Glacier du Géant basin using aerial photographs, and at the scale of four selected rock walls using the 3D models. Two main vertical and one horizontal fracture sets were identified. They correspond respectively to alpine shear zones and veins opened-up during long-term exhumation of the Mont Blanc massif. Our study confirms that climate primarily controls rockfall occurrence, and that structural settings, coincident at both the massif and the rock wall scales, control the rock-wall shapes as well as the geometry and volume of the rockfall events. © 2020 John Wiley & Sons, Ltd.  相似文献   
17.
在对青藏高原东南缘地区的理塘左旋走滑活动断裂带野外调查研究中,在其奔戈- 村戈段开挖了两个探槽LT1301和SLT1204。在对两个探槽上所揭示出的古地震事件进行详细划分的基础上,结合所获得的10个OSL年代样品和13个14C年代样品的测试年龄,对理塘断裂带北段的古地震事件发生时代进行了厘定。结果表明2个探槽共揭示出至少4次古地震事件,其中小规模的探槽LT1301仅揭示出1次古地震,可能为发生于公元1729年的历史地震,或是可能发生于距现在950a~1. 0ka之间的一次大地震,由于关键部位年代数据不足,上述两种可能性尚无法明确。较大的探槽SLT1204揭示出包含有探槽LT1301中古地震事件在内的古地震4次,最早的古地震事件I发生于9. 9ka之前,而事件II、III和IV则发生在公元1729年~4. 8kaBP之间,复发间隔为约1. 6ka。川西理塘断裂带北段的古地震研究结果表明,该断裂的大地震复发具有非线性特征,不符合特征地震模式,其中全新世晚期的大地震活动频率明显增大,表明它正处于丛集活动阶段。  相似文献   
18.
《地学前缘(英文版)》2020,11(4):1189-1201
Numerous lenses of garnet amphibolite occur in the garnet-bearing biotite-plagioclase gneiss belt in the Baishan area of the Beishan Orogen,which connects the Tianshan Orogen to the west and the Mongolia-Xing'anling Orogen to the east.The study of metamorphism in Beishan area is of great significance to explain the tectonic evolution of Beishan orogen.According to the microstructures,mineral relationships,and geothermobarometry,we identified four stages of mineral assemblages from the garnet amphibolite sample:(1) a pre-peak stage,which is recorded by the cores of garnet together with core-inclusions of plagioclase(Pl_1);(2) a peak stage,which is recorded by the mantles of garnet together with mantle-inclusions of plagioclase(Pl_2)+amphibole(Amp_1)+Ilmenite(Ilm_1)+biotite(Bt_1),developed at temperature-pressure(P-T) conditions of 818.9-836.5℃ and7.3-9.2 kbar;(3) a retrograde stage,which is recorded by garnet rims + plagioclase(Pl_3)+amphibole(Amp_2)+orthopyroxene(Opx_1)+biotite(Bt_2)+Ilmenite(Ilm_2),developed at P-T conditions of 796.1-836.9℃ and5.6-7.5 kbar;(4) a symplectitic stage,which is recorded by plagioclase(Pl_4)+orthopyroxene(Opx_2)+amphibole(Amp_3)+biotite(Bt_3) symplectites,developed at P-T conditions of 732 ±59.6℃ and 6.1 ±0.6 kbar.Moreover,the U-Pb dating of the Beishan garnet amphibolite indicates an age of 301.9 ±4.7 Ma for the protolith and 281.4±8.5 Ma for the peak metamorphic age.Therefore,the mineral assemblage,P-T conditions,and zircon U-Pb ages of the Beishan garnet amphibolite define a near-isothermal decompression of a clockwise P-T-t(Pressure-Temperature-time) path,indicating the presence of over thickened continental crust in the Huaniushan arc until the Early Permian,then the southern Beishan area underwent a process of thinning of the continental crust.  相似文献   
19.
Linking ages to metamorphic stages in rocks that have experienced low‐ to medium‐grade metamorphism can be particularly tricky due to the rarity of index minerals and the preservation of mineral or compositional relicts. The timing of metamorphism and the Mesozoic exhumation of the metasedimentary units and crystalline basement that form the internal part of the Longmen Shan (eastern Tibet, Sichuan, China), are, for these reasons, still largely unconstrained, but crucial for understanding the regional tectonic evolution of eastern Tibet. In situ core‐rim 40Ar/39Ar biotite and U–Th/Pb allanite data show that amphibolite facies conditions (~10–11 kbar, 530°C to 6–7 kbar, 580°C) were reached at 210–180 Ma and that biotite records crystallization, rather than cooling, ages. These conditions are mainly recorded in the metasedimentary cover. The 40Ar/39Ar ages obtained from matrix muscovite that partially re‐equilibrated during the post peak‐P metamorphic history comprise a mixture of ages between that of early prograde muscovite relicts and the timing of late muscovite recrystallization at c. 140–120 Ma. This event marks a previously poorly documented greenschist facies metamorphic overprint. This latest stage is also recorded in the crystalline basement, and defines the timing of the greenschist overprint (7 ± 1 kbar, 370 ± 35°C). Numerical models of Ar diffusion show that the difference between 40Ar/39Ar biotite and muscovite ages cannot be explained by a slow and protracted cooling in an open system. The model and petrological results rather suggest that biotite and muscovite experienced different Ar retention and resetting histories. The Ar record in mica of the studied low‐ to medium‐grade rocks seems to be mainly controlled by dissolution–reprecipitation processes rather than by diffusive loss, and by different microstructural positions in the sample. Together, our data show that the metasedimentary cover was thickened and cooled independently from the basement prior to c. 140 Ma (with a relatively fast cooling at 4.5 ± 0.5°C/Ma between 185 and 140 Ma). Since the Lower Cretaceous, the metasedimentary cover and the crystalline basement experienced a coherent history during which both were partially exhumed. The Mesozoic history of the Eastern border of the Tibetan plateau is therefore complex and polyphase, and the basement was actively involved at least since the Early Cretaceous, changing our perspective on the contribution of the Cenozoic geology.  相似文献   
20.
新构造运动系指晚新生代以来的构造运动,其在天然地震研究、煤田地质与油气勘探、城市建设等领域均具有重要的意义。以淮南顾桥煤矿为研究区,结合区域构造背景和顾桥煤矿的地震地质条件,利用地震解释中的层拉平技术恢复研究区典型剖面的古构造地貌,厘定了各条断层的时空配置关系;结合13块钻孔岩心样品的ESR和热释光年龄,定量分析了断层的发育年代。结果表明:研究区存在新构造运动,且与地震层拉平构造演化预测结论吻合;研究成果对于顾桥煤矿的设计和安全生产的意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号